
УЧЕБНЫЙ СТЕНД DTK-1

для изучения основ программирования встраиваемых систем

По вопросам приобретения учебного стенда DTK-1 обращайтесь по e-mail: ebogdanova@dlink.ru

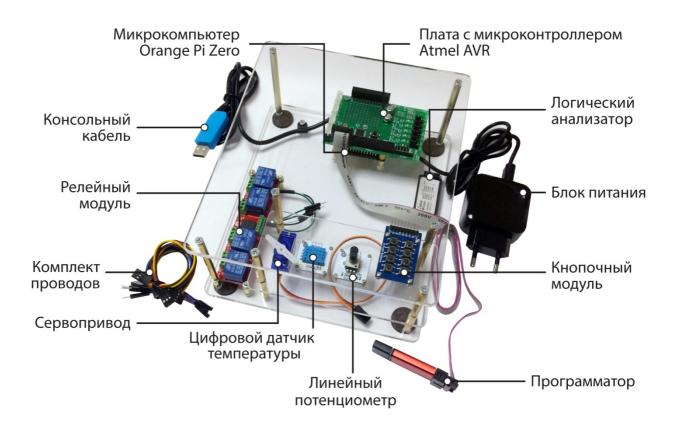
1. НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ

Учебный стенд DTK-1 предназначен для проведения лабораторных (практических) работ для студентов высших и средних специальных учебных заведений с целью получения опыта и навыков программирования встраиваемых систем, таких как телекоммуникационное оборудование, устройства интернета вещей, системы умного дома, системы управления, контроля и мониторинга и др.

Учебный стенд DTK-1 позволяет:

- изучить основные команды Linux;
- научиться выполнять компиляцию программ на языках С и С++ с помощью компилятора GNU GCC;
- научиться работать с системой сборки GNU Make;
- научиться разрабатывать программы для микроконтроллеров семейства AVR на языках программирования Assembler и C;
- научиться разрабатывать программы для микропроцессоров семейства ARM на языке программирования С;
- научиться разрабатывать встраиваемые системы, содержащие датчики и исполнительные устройства: светодиоды, кнопки, реле, потенциометры, датчики температуры и влажности, аналоговые сервоприводы.

Стенд рекомендуется для обучения студентов по направлениям:


- 09.03.01 «Информатика и вычислительная техника» (бакалавриат);
- 02.03.03 «Математическое обеспечение и администрирование информационных систем» (бакалавриат);
- 09.03.04 «Программная инженерия» (бакалавриат);
- 09.04.01 «Информатика и вычислительная техника» (магистратура);
- 02.04.03 «Математическое обеспечение и администрирование информационных систем» (магистратура);
- 09.04.04 «Программная инженерия» (магистратура);
- а также всех, кто занимается в сфере современных компьютерных технологий и проектирования встраиваемых систем.

2. УСТРОЙСТВО СТЕНДА

Стенд реализован на базе микрокомпьютера **Orange Pi Zero**, функционирующего под управлением ОС Linux, и платы расширения – периферийного контроллера на основе микроконтроллера **Atmel ATmega328P**.

Также в состав стенда входит:

- Программатор USBISP;
- Кнопочный модуль;
- Цифровой датчик температуры;
- Линейный потенциометр;
- Четырехканальный релейный модуль;
- Сервопривод аналоговый;
- Логический анализатор;
- Консольный кабель USB-TTL;
- Набор соединительных проводов;
- Блок питания 5В, 2,4А;
- Карта памяти microSD (8 ГБ).

3. ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Микрокомпьютер Orange Pi Zero	Процессор Allwinner H2+:
Плата расширения	USB 2.0 Микроконтроллер Atmel ATmega328P
	- 8-битный процессор - 32 КБ Flash - 2 КБ ОЗУ - 1КБ ЕЕРКОМ - USART (1 канал), - SPI (1 канал), - I ² C (TWI) (2 канала).
	Светодиоды (5 В) Выводы для подключения внешних устройств
Цифровой датчик температуры	Базовый компонент: DHT-11 Питание: DC 3 – 5 В Определение температуры: от 0°C до 50°C (±2 °C)) Определение влажности: от 20% до 90% (±5%) Частота опроса: не более 1 Гц
Линейный потенциометр	Сопротивление: 10 кОм Угол поворота движка: 300°
Сервопривод аналоговый	Питание: DC 5 В Управление: ШИМ с периодом 20 мс Угол поворота: 180°
Релейный модуль	Питание: DC 5 B Нагрузка: AC 10 A 250 B или DC 10 A 30 B
Логический анализатор	Питание: DC 5 В (от USB-порта компьютера) Количество цифровых каналов: 8 Частота захвата: 24 МГц
Питание	Адаптер питания ¹ - Вход: от 100 до 240 В переменного тока, 50/60 Гц - Выход: 5 В постоянного тока, 2.4 А
Размеры (Д х Ш х В)	204 х 174 х 80 мм

 $^{^{1}}$ ВНИМАНИЕ: при подключении к плате Orange PI на блоке питания использовать USB-разъем **2.4A**.

4. КОМПЛЕКТ ПОСТАВКИ

Наименование	Кол-во
1. Учебный стенд DTK-1 в сборе	1 шт.
2. Блок питания	1 шт.
3. Карта памяти	1 шт.
4. Программатор USB ISP	1 шт.
5. Логический анализатор	1 шт.
6. Консольный кабель USB-TTL	1 шт.
7. Комплект проводов «мама»-«папа»	1 шт.
8. Комплект проводов «папа»-«папа»	1 шт.
9. Комплект проводов «папа»-«папа»	1 шт.
10. Учебно-методические материалы (теоретический курс + лабораторные работы)	В электронном виде

5. УЧЕБНО-МЕТОДИЧЕСКОЕ СОПРОВОЖДЕНИЕ

В комплект поставки стенда входят материалы <u>теоретического курса</u> «Введение во встраиваемые системы. Часть 1. Использование Linux и микропроцессорные системы» и 10 лабораторных работ:

- 1. Знакомство с учебным стендом DTK-1;
- 2. Основные команды Linux:
- **3.** Командные файлы и язык Shell;
- **4.** Компилятор GCC. Утилита Make;
- **5.** Использование интерфейса GPIO. Часть 1;
- **6.** Использование интерфейса GPIO. Часть 2;
- 7. Аналогово-цифровые преобразователи. Широтно-импульсная модуляция;
- **8.** Последовательный интерфейс UART. Особенности настройки и программирования;
- **9.** Последовательный интерфейс I²C. Обработка информации от датчиков;
- **10.** Программирование логических операций на языке Assembler.
- В настоящее время разрабатываются дополнительные лабораторные работы, направленные на изучение особенностей встраиваемых систем, построенных на устройствах типа «Система на кристалле», на примере микроконтроллеров (МК).

Расширение курса. Дополнительные лабораторные работы

- 1. Изучение архитектуры и структуры МК AVR Atmega 328P;
- 2. Выполнение арифметических и логических операций в МК AVR;
- 3. Обработка массивов данных в МК AVR;
- 4. Изучение выводов МК AVR Atmega 328P. Работа с выводами общего назначения;
- **5.** Работа с внешними прерываниями в МК AVR Atmega 328P;
- **6.** Изучение таймеров AVR Atmega 328P;
- 7. Аналого-цифровой преобразователь AVR Atmega 328P;
- 8. Последовательный интерфейс UART в МК AVR;
- 9. Последовательный интерфейс SPI в МК AVR;
- **10.** Последовательный интерфейс I^2C в MK AVR.

Также ведется разработка курса «Введение во встраиваемые системы. Часть 2: Программирование встраиваемых систем на основе Linux», посвященного разработке программной составляющей встраиваемых систем на базе свободного ПО.