

Расширенные функции

6.1 DHCP Relay (Option 82) – информация от агента DHCP Relay

DHCP Relay (Option 82) – информация от агента DHCP Relay

- Option 82 используется Relay Agent (агентом перенаправления запросов) для добавления дополнительной информации в DHCP запрос клиента. Эта информация может быть использована для применения политик, направленных на увеличение уровня безопасности и эффективности сети.
- Она описана в стандарте RFC 3046.

D-Link

DHCP Relay (Option 82) – информация от агента DHCP Relay

Когда вы включаете опцию DHCP Relay Agent Option 82 на коммутаторе D-link, происходит следующее:

- Компьютер в сети (DHCP клиент) генерирует DHCP запросы и <u>широковещательно</u> рассылает их в сеть.
- Коммутатор (DHCP Relay Agent) перехватывает DHCP запрос раскет и добавляет в него информацию relay agent information option (Option 82). Эта информация содержит MAC – адрес коммутатора (поле опции remote ID) и VLAN ID, а котором находится DHCP-клиент и SNMP ifindex порта, с которого получен запрос (поле опции circuit ID).
- Коммутатор <u>перенаправляет DHCP запрос с полями опции Option 82 на DHCP сервер.</u>
- DHCP сервер получает пакет. Если сервер поддерживает опцию Option 82, <u>он может использовать поля remote ID и/или circuit ID для назначения IP-адреса и применения политик</u>, таких как ограничения количества IP-адресов, выдаваемых одному remote ID или circuit ID. Затем DHCP сервер копирует поле опции Option 82 в DHCP ответе.Если сервер не поддерживает Option 82, он игнорирует поля этой опции и не отсылает их в ответе.
- <u>DHCP сервер отвечает в Unicast-е агенту перенаправления запросов</u>. Агент проверяет предназначен ли он его клиенту, путём анализа IP адреса назначения пакета.
- <u>Агент удаляет поля опции Option 82 и направляет пакет на порт, к которому подключён</u> <u>DHCP - клиент,</u> пославший пакет DHCP – запроса.

Формат полей опции DHCP option 82 специализированного DHCP Relay Agent-а

Поле опции DHCP Option 82 имеет следующий формат :

Формат поля опции Circuit ID: 1. 2. 3. 4. 5. 6. 7. 1 6 **VLAN** 0 4 Module Port 1 байт 1 байт 2 байта 1 байт 1 байт 1 байт 1 байт

Тип подопции 1.

D-Link

- Длина: длина поля с октета 3 по октет 7 2.
- 3. Тип Circuit ID
- Длина: длина поля с октета 5 по октет 7 4.
- VLAN: номер VLAN ID в DHCP пакете клиент. 5.
- 6. Модуль: Для отдельно стоящего коммутатора, поле Модуль всегда равно 0; Для коммутатора в стеке, поле Модуль это Unit ID.
- Порт: номер порта, с которого получен DHCP запрос, номер порта начинается с 1. 7.

Локальный идентификатор агента, который получил DHCP – пакет от клиента. **Relay Agent**

53 222 224

DHCP - запро

С какого порта получен

DHCP - запрос

5. МАС-адрес: МАС-адрес коммутатора.

Формат поля опции Circuit ID

Формат поля опции Remote ID

Пример настройки Option 82

Устройства:

- 1. DHCP сервер 192.168.0.221 в подсети 192.168.0.0/24
- Маршрутизатор или коммутатор L3, выступающий в роли шлюза для 2-ух подсетей 192.168.0.1 в подсети 192.168.0.0/24
 10.100.10.1 в подсети 10.100.10.0/24
- Коммутатор L2 (DES-3200-10) выступает в роли DHCP Relay Agent 192.168.0.170 в подсети 192.168.0.0/24
 MAC адрес 00-24-01-FC-8F-D8
- 1. 3 ноутбука, выступающих в роли DHCP клиентов, подключённых к коммутатору L2 порты 1, 2 и 5

Сервер с поддержкой DHCP Option 82

 DHCP – сервер использует динамический пул IP-адресов 10.100.10.200 – 10.100.10.250 для назначения IP-адресов любому DHCP – клиенту, запрос от которого будет перенаправлен DHCP Relay Agent-ом 192.168.0.170 (Если DHCP – клиент, подключён к любому порту коммутатора, кроме портов 1 и 2, он получит IP-адрес из пула.)

--- Для обычного DHCP – запроса клиента

D-Link

 Когда какой-либо DHCP – клиент подключается к порту 1 коммутатора L2, DHCP – сервер выдаст ему IP-адрес 10.100.10.101; когда DHCP – подключается к порту 2 коммутатора L2, DHCP – сервер выдаст ему IP-адрес 10.100.10.102. (например, DHCP – клиент, подключённый к порту 1 коммутатора, получит IP-адрес 10.100.10.101)

--- Для DHCP – запросов клиента с option 82

Конфигурация коммутатора L3

Настройка коммутатора L3 (DGS-3627): # Настройте влан, в котором будут находиться DHCP – клиенты create vlan client tag 555 config vlan client add tagged 1-12 # Настройте управляющий влан, в котором будет находиться DHCP сервер create vlan management tag 1234 config vlan management add tagged 1-12 config vlan default delete 24 config vlan management add untagged 24 # Сконфигурируйте и создайте IP-интерфейсы в VLAN client и management config ipif System ipaddress 10.90.90/24 create ipif client_gw 10.100.10.1/24 client state enable create ipif manag gw 192.168.0.1/24 management state enable # Сохраните настройки save

Конфигурация коммутатора L2

Настройка коммутатора L2 (DES-3200-10): # Настройте клиентский и управляющий вланы на DES-3200-10 config vlan default delete 1-8 create vlan client tag 555 config vlan client add tagged 9-10 config vlan client add untagged 1-8 create vlan management tag 1234 config vlan management add tagged 9-10 # Настройте управляющий интерфейс config ipif System ipaddress 192.168.0.170/24 vlan management # Настройте DHCP Relay enable dhcp_relay config dhcp_relay option_82 state enable config dhcp_relay option_82 check disable config dhcp_relay option_82 policy replace config dhcp_relay option_82 remote_id default config dhcp_relay add ipif System 192.168.0.221 # Разрешите клиентам доступ в управляющем влане, только к DHCP серверу. Остальное запретите create access_profile ip destination_ip 255.255.255.255 profile_id 5 config access_profile profile_id 5 add access_id 1 ip destination_ip 192.168.0.221 port 1-8 permit create access profile ip destination ip 255.255.255.0 profile id 6 config access profile profile id 6 add access id 1 ip destination ip 192.168.0.0 port 1-8 deny # Сохраните настройки save

Настройка DHCP – сервера - 1

Рассмотрим пример настройки сервера isc-dhcpd. Ниже приведено содержимое dhcpd.conf:

Настройка основных параметров

lease-file-name "/var/log/dhcpd.leases"; log-facility local7; authoritative; default-lease-time 86400; ddns-update-style none; local-address 192.168.0.221; one-lease-per-client true; deny duplicates;

Настройка логирования (в лог записываются МАС адрес, влан и порт клиента, запросившего IP адрес)

```
if exists agent.circuit-id {
    log(info, concat("Lease"," IP ",binary-to-ascii(10, 8,".",leased-address),
    " MAC ",binary-to-ascii(16,8,":",substring(hardware,1, 6)),
    " port ",binary-to-ascii(10,16, "",substring(option agent.circuit-id, 4,
    2)),
    " VLAN ",binary-to-ascii(10, 16,"",substring(option agent.circuit-id, 2, 2))
));
}
```

Сравниваются Remote ID и Circuit ID с заданными. Согласно дизайну преобразования binary-to-ascii незначащие нули слева отбрасываются

```
class "sw170-1" {
  match if binary-to-ascii(16, 8, ":", suffix(option agent.remote-id, 5))
  = "24:1:fc:8f:d8" and binary-to-ascii(10, 8, "", suffix(option
  agent.circuit-id, 1)) = "1";
}
class "sw170-2" {
  match if binary-to-ascii(16, 8, ":", suffix(option agent.remote-id, 5))
  = "24:1:fc:8f:d8" and binary-to-ascii(10, 8, "", suffix(option
  agent.circuit-id, 1)) = "2";
}
```

Настройка DHCP – сервера - 2

Продолжение содержимого файла dhcpd.conf:

shared-network test {

Включить опцию, позволяющую клиенту корректно продлевать аренду IP адреса прямым запросом на сервер, не содержащим Option 82 (минуя DHCP Relay Agent) stash-agent-options true;

Запретить выдавать IP-адреса из подсети 192.168.0.0/24 (в этой подсети находятся управляющие интерфейсы коммутаторов и доступ клиентов в эту подсеть должен быть ограничен)

subnet 192.168.0.0 netmask 255.255.255.0 { deny unknown-clients;

Описать выдаваемые клиенту по DHCP параметры subnet 10.100.10.0 netmask 255.255.255.0 { option broadcast-address 10.100.10.255; option domain-name-servers 10.100.10.1; option routers 10.100.10.1; option subnet-mask 255.255.255.0; # Задать адреса, получаемые клиентами : # клиентом , подключенным к порту 1 pool { range 10.100.10.101; allow members of "sw170-1";} # клиентом , подключенным к порту 2 pool { range 10.100.10.102; allow members of "sw170-2";} # клиентами, находящимися на других портах pool { range 10.100.10.200 10.100.10.250;}

Информация DHCP Relay Agent (Option 82)

Результаты теста:

- 1. Клиенту А будет выдан IP-адрес 10.100.10.101
- 2. Клиенту Б будет выдан IP-адрес 10.100.10.102
- 3. Клиенту В будет выдан IP-адрес 10.100.10.200

6.2 RSPAN

- Функция RSPAN может использоваться для зеркалирования клиентского трафика на порт удаленного коммутатора.
- Нет необходимости подключаться сниффером (анализатором трафика) к коммутатору клиента.
- Для работы RSPAN необходима настройка на всех коммутаторах в цепочке – от клиента и до сниффера.
- Зеркалироваться может весь трафик как входящий, так и исходящий, либо по отдельности.
- Термины RSPAN:

- Порт источник (Source port) порт, трафик с которого копируется на порт со сниффером
- Порт назначения (Destination port) порт, на который посылается копия трафика и к которому подключается сниффер.
- RSPAN VLAN это VLAN, по которому передается зеркалируемый трафик между коммутаторами в цепочке.

Пример использования RSPAN

Коммутатор А:

create vlan rspanvlan tag 4094 create rspan vlan vlan_name rspanvlan config rspan vlan vlan_name rspanvlan source add ports 1 both enable rspan config mirror port 26 enable mirror

Коммутатор В:

create vlan rspanvlan tag 4094 config vlan rspanvlan add tagged 21,22 create rspan vlan vlan_name rspanvlan config rspan vlan vlan_name rspanvlan redirect add port 22 enable rspan

При данных настройках весь трафик Сотр А будет попадать на Sniffer

Коммутатор В

6.4 Диагностика кабеля

Диагностика кабеля (Cable Diagnostics)

D-Link

Функция диагностики кабеля позволяет оперативно узнавать информацию о состоянии кабельной системы, в том числе определять длину кабеля между коммутатором и клиентом, а также с довольно большой точностью* находить место возникновения неисправности

* Отклонение результата измерения диагностики кабеля от фактического значения не превышает 5-ти метров

Результаты работы функции диагностики кабеля

Результаты работы функции диагностики кабеля могут быть следующими:

ОК: кабель исправен.

Ореп: обрыв кабеля на указанной позиции.

Short: короткое замыкание на указанной позиции.

Open-Short: не удалось установить точную причину возникновения неисправности: короткое замыкание, либо обрыв на указанной позиции. Диагностику кабеля лучше провести повторно.

Crosstalk: неисправность вызвана наличием перекрестных помех на указанном участке.

Unknown: не удалось получить информацию о состоянии кабеля. Диагностику кабеля лучше провести повторно.

No Cable: кабель не подключен.

Важно: при запуске диагностики кабеля на гигабитных портах происходит кратковременное отключение линка, поэтому нужно с осторожностью использовать этот функционал на портах, которыми коммутаторы соединены между собой.

Примеры работы функции диагностики кабеля

В качестве примера произведем диагностику кабеля на 1 и 9 портах коммутатора:

DES-320 Command)0-10:5#(l: cable	cable_diag ports 1 _diag ports 1							
Perfor	m Cable	Diagnostics							
Port	Туре	Link Status		Test	Result		Cable	Length	(M)
1	FE	Link Up	ОК					1	
DES-3200-10:5#cable_diag ports 9 Command: cable_diag ports 9									
Perfor	m Cable	Diagnostics							
Port	Т уре	Link Status		Test	Result		Cable	Length	(M)
9	GE	Link Up	No	Cable				_	

Как видно из результата работы функции кабель, подключенный в первый порт коммутатора, исправен. Длина его составляет 1 метр.

В девятый порт коммутатора кабель не подключен.

6.3 LLDP (802.1ab)

LLDP (802.1ab)

D-Link

LLDP определяет стандартный метод для устройств в сети Ethernet. как коммутаторы, маршрутизаторы таких И беспроводные точки доступа, с помощью которого устройства распространяют информацию о себе среди других узлов в сети и сохраняют полученные данные. В частности, LLDP определяет набор общих информационных сообщений, протокол для их передачи и метод хранения. Множество таких сообщений посылается устройством через локальную сеть с помощью одного пакета в форме поля «тип, длина, значение». Все LLDPустройства должны обязательно поддерживать сообщения с идентификаторами шасси (chassis ID) и портов (port ID) а также такие параметры, как системное имя (system name), системный дескриптор (system descriptor) и системные возможности (system capabilities). Первые два из них обеспечивают полезную информацию для сбора инвентаризационных данных.

LLDP (802.1ab)

Протоколом предусматривается передача данных только в одном направлении. То есть LLDP-устройства не обмениваются информацией в режиме запрос–ответ, а также не подтверждают ее получение. Каждый LLDP-пакет т. н. Link Layer Discovery Protocol Data Unit (LLDPDU) должен содержать четыре обязательных TLV(type-length-value):

- chassis ID TLV: идентифицирует шасси устройств LAN 802;
- port ID TLV: идентифицирует порт, через который передается LLDP-пакет;
- TTL TLV: указывает отрезок времени в секундах, в течение которого полученная информация актуальна;
- end of TLV: определяет конец TLV.

Версия длина	DA	SA	Ethertype	Chassis ID TLV	Port ID TLV	Time to live TLV	Optional TLVs	End of LLDPDU TLV	Контрольн ая сумма
	01:80:c2:00:00:0e 01:80:c2:00:00:03 01:80:c2:00:00:00		0x88CC	Type=1	Type=2	Туре=3		Type=0	
	01:80:c2	2:00:00:0e				ŀ	(оличество д	цополнитель	ных
	01:80:c2 01:80:c2	2:00:00:03 2:00:00:00				ר ר ו	толей может гипа оборудо настроек	зависеть ка ования так и	к от от его

LLDP (802.1ab)

Вот так выглядит LLDP пакет в пакетном анализаторе wireshark

▶ F	rame 30: 99 bytes on wire (792 bits), 99 bytes capture	ed (792 bits)	
ÞΕ	thernet II, Src: D-Link_7a:7d:78 (00:17:9a:7a:7d:78),	Dst: LLDP_Multicast (01:80:c2:00:00:0e)	
ΨL	ink Layer Discovery Protocol		
Þ	Chassis Subtype = MAC address, Id: 00:17:9a:7a:7d:78	Chassis ID	
Þ	Port Subtype = Locally assigned, Id: 1/8	Port ID	
Þ	Time To Live = 120 sec	TTL	
Þ	Port Description = RMON Port 8 on Unit 1		
Þ	System Name = D-Link		
Þ	System Description = Fast Ethernet Switch		
Þ	Capabilities		
Þ	End of LLDPDU	End of TLV	

LLDP (802.1ab)

Устройство с поддержкой LLDP может работать в 3-х режимах:

- -Только приём: Устройство может принимать и анализировать LLDP пакеты, поступающие на него, но не может ничего отослать
- -Только передача: Устройство может рассылать LLDP пакеты, но не принимает их
- -Приём и передача: Устройство рассылает LLDP пакеты, а также анализирует пакеты, принимаемые от других устройств в сети.

LLDP (802.1ab)

Включаем поддержку LLDP

enable lldp

Задаём интервал отсылки пакетов

config IIdp message_tx_interval 30

Задаём работу в режиме приёма и отправки

config lldp ports 1-28 admin_status tx_and_rx

Задаём какие дополнительные параметры будут добавляться в LLDP пакет

config lldp ports 1-28 basic_tlvs port_description system_name system_description system_capabilities enable

LLDP (802.1ab)

Пример отображения LLDP информации об удалённом устройстве

DES-3028:4#show IIdp remote_ports 24
Command: show Ildp remote_ports 24

Port ID: 24

Remote Entities Count : 1	
Entity 1	
Chassis Id Subtype	: MAC Address
Chassis Id	: 00-15-E9-AC-D7-EB
Port Id Subtype	: Local
Port ID	: 1/24
Port Description	: DES-3526 port 24 desc
System Name	: D-Link
System Description	: Fast Ethernet Switch
System Capabilities	: Repeater, Bridge
Management Address Count	: 0
Port PVID	: 0
PPVID Entries Count	: 0

6.4 Super VLAN

- Позволяет собрать несколько клиентских VLAN на одном L3 интерфейсе, который является шлюзом (gateway) для хостов.
- Удобно при реализации схемы «VLAN на пользователя».
- Экономится адресное пространство пользователи, находящиеся в разных L2 сегментах (каждый в отдельном VLAN), находятся в одной L3 сети (у всех адрес из одной подсети, к примеру – 192.168.0.0/24) – нет необходимости на каждого выделять свою подсеть и шлюз.
- Механизм Proxy ARP позволяет хостам различных клиентских VLAN общаться между собой через шлюз.
- Работает совместно в DHCP Relay

Пример использования Super VLAN

• Коммутатор А:

config vlan default delete 1-24В разныcreate vlan v100 tag 100умолчанconfig vlan v100 add tagged 1умолчанcreate vlan v200 tag 200config vlan v200 add tagged 2create vlan sv1000 tag 1000create super_vlan sv1000config super_vlan sv1000 add sub_vlan 100config super_vlan sv1000 add sub_vlan 200config sub_vlan v100 add ip_range 192.168.0.2 to 192.168.0.127config sub_vlan v200 add ip_range 192.168.0.128 to 192.168.0.254create ipif svi1000 192.168.0.1/24 sv1000 state enable

- Трафик с DES-3200 тегирован
- Пользователи v100 и v200 находяится в разных vlan, но имеют один шлюз по умолчанию – svi1000

Спасибо!

